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We define a lattice Boltzmann model of solid, deformable suspensions immersed
in a fluid itself described in terms of the lattice Boltzmann method. We discuss
the rules governing the internal dynamics of the solid object as well as the rules
specifying the interaction between solid and fluid particle. We perform a
numerical drag experiment to validate the model. Finally we consider the case of
a population of flexible chains in suspension in a shear stress flow and study the
influence on the velocity profile.
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1. INTRODUCTION

The lattice Boltzmann (LB) technique (1–3) is now widely used to simulate
complex fluid flows. (4, 5) In this approach, the fluid is discretized on a lattice
and is represented by distributions functions Nk(rF, t) giving the density of
fictitious fluid particles with velocity vFk entering lattice site rF at discrete
time t. The admissible velocities vFk are dependent of the lattice topology.
Usually, k runs between 0 and z, where z is the lattice coordination number
(i.e., the number of lattice links). By convention vF0=0 and N0 represents
the density distribution of rest particles.
In the so-called non-thermal BGK model, (1, 3, 6, 2) the evolution of the

density distribution is

Nk(rF+yvFk, t+y)=Nk(rF, t)+w(N
(0)
k (rF, t)−Nk(rF, t)) (1)



where y is the time step of the simulation, w the inverse of a relaxation time
and N (0)k the local equilibrium which is a function of the density r=
;z
i=0 mkNk and the fluid velocity uF=

1
r;z

i=1 mkNkvFk. The quantities mk are
weights associated with the lattice directions. See refs. 1, 6, and 7 for more
information.
A lattice Boltzmann fluid is thus a virtual fluid made of fictitious

mesoscopic particles evolving in a discrete space-time universe. It is well
known that Eq. (1) produces the same behavior as that predicted by the
Navier–Stokes equations.
In refs. 1, 8, and 9 we have investigated the possibility to use the LB

framework to go beyond the fluid model and describe a virtual solid body.
In our approach, a solid is made up of a collection of particles, locally
connected through an elastic interaction, which can move (usually off-
lattice) according to sensible physical laws, deform while keeping its
integrity and possibly break if internal constraints become too large.
The purpose of this paper is to immerse such a solid object in a lattice

Boltzmann fluid and study the properties of such a system. The interest is
to obtain a fully mesoscopic model for a fluid-solid system, in which both
the solid and the fluid are treated on the same footing and all interactions
take place locally, at the level of the particles making up the solid or the
fluid. Thus, our approach differs from that of Ladd, Behrend or
Aidun (10–12) in which the solid suspended in the fluid is rigid and its motion
is computed at a higher level of abstraction by aggregating the effect of the
fluid around its surface.
The applications we might consider within this framework are fluid

flows within flexible walls (e.g., blood flow in arteries), the effect of wind
on solid structures (buildings), and a way to introduce non-Newtonian
behavior in a flow.
The paper is organized as follows. In Section 2 the solid model and its

basic properties are recalled. The interaction fluid-solid is described in Sec-
tion 3 and some validation of the model are proposed in Section 4.

2. A LATTICE BOLTZMANN MODEL FOR A SOLID BODY

A simple, two-dimensional solid model can be defined as an array of
particles connected according to a square topology. Each particle (i, j) is
characterized by its spatial location rFij(t) ¥ R2 at the discrete time t and the
list of neighbors it is connected to. A bulk particle is typically connected to
four other particles (at North, West, South and East) but the shape of the
solid boundary can be arbitrary and border particles may have three, two
or even one neighbor.
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An intuitive explanation of the rule describing the motion of the par-
ticle making up such a solid can be found in refs. 13, 1, 8, and 9. Here we
explain the model in a more abstract way and give some of its important
properties. It turns out that the dynamics of our solid is described by an
LB equation having a similar structure as to (1). We refer the reader to a
forthcoming paper for a complete account of the model (14) and the proofs
of its properties.
Figure 1 gives an example of the type of solid body our model can deal

with. A square sheet of particles with a given initial velocity keep bouncing
over surrounding rigid walls. When a particle at the boundary of the solid
reaches a wall, it is stopped and the solid starts deforming until the entire
object has bounced back. When the solid and the wall do not interact, the
center of mass of the solid follows a straight line, as it should for a body
whose momentum is conserved.

2.1. Definition of the Model

To describe an object such as that of Fig. 1, we first label each particle
with an index aF=(i, j) and introduce vectors cFk (typically cF1=(1, 0),
cF2=(0, 1), cF3=(−1, 0), c4(0, −1)) so that the neighbor of particle aF in
direction k is labeled aF+cFk. The index k runs over all the links that connect
a particle to its neighbors. For bulk particles in 2D, k runs from 1 to 4, but
at the boundary several links may be missing.
The internal dynamics of our virtual solid is due to the forces fFk(aF)

acting on each particle aF=(i, j) and caused by some idealized springs of rest
length Dk connecting particles aF and aF+cFk. Figure 2 illustrates the situation

Fig. 1. Simulation of a 2D LB solid object with an initial momentum and moving in a con-
tainer with rigid walls.
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Fig. 2. The internal dynamics of a LB solid. The fFk’s are interpreted as the forces acting on
a particle due to the local deformation of the structure. These forces result in the motion of
the particle which, in turn give rise to a redistribution of the forces to the nearest neighbors.
On the left, a fragment of five particles in a rest configuration is shown; in the middle, the
fragment is under strain; on the right, the particle displacement caused by the forces is
displayed.

and Fig. 3 explain the symbols. Note that in this model, the springs have a
fixed orientation.
Since elastic deformations in a solid propagate as a wave, we propose

to describe the dynamics of the forces fFk using a LB formulation of a wave
process. It can be shown (1, 15) that

fFk(aF+ycFk, t+y)=fFk(aF, t)+w(fF
(0)
k (aF, t)−fFk(aF, t)) (2)

causes the quantities fFk to propagate as a wave provided that w=2 and

fF (0)k =
1
2M
YF+
1
2
cFkJ

f1

f2

f3

f4

∆3

∆4

∆1

∆2

c1

c3

c2

c4

Fig. 3. Labeling of the forces and directions. By definition, the forces are labeled according
to the direction through which the interaction has propagated. For instance, fF3(aF) comes from
particle aF+cF1 through link cF3. Finally, the quantities DFk designate the spring at rest connecting
particle aF to aF+cFk.

26 Chopard and Marconi



where the quantity YF aF is

YF aF(t)=C
k
fFk(aF, t) (3)

and the tensor J reads

Jab=C
k
ckafkb (4)

The quantity M is dependent of the particle and the number of neighbors
it is connected to. The appropriate choice to satisfy the conservation
laws (13, 14) is to consider a contribution of 1/2 per link. Thus, if particle aF
has K neighbors, we define

MaF=
K
2

(5)

For the present 2D case, the number of links is smaller than or equal to 4,
but this model extends easily to 3D. Also, note that a rest field fF0 could
also be introduced in the dynamics to tune the speed of sound. (1, 6) This
possibility will not be discussed here.
Equation (2) is similar to Eq. (1) except that the fields fFk are vectors

and do not need to be positively defined. In addition, the local equilibrium
distribution is different of that of hydrodynamics in order to obtain a wave
propagation. In particular, Eq. (2) is linear. Finally the condition w=2 is
necessary to ensure time reversal invariance and does not cause any
numerical stability problems as long as one considers lattice topologies
with links all of the same length, such as D2Q5, D2Q7, or D3Q7.
Assuming that an external force FFaF may be acting on each particle aF,

Eq. (2) together with (3) and (4) can be cast in a more compact form

fFi(aF+cFi, t+y)=M
−1
aF YF aF(t)−fFi+2(aF, t)+

FFaF(t)
2MaF

(6)

The above equations describe how the internal forces evolve in the
system. They also cause the particles to move. Whereas the force fields are
attached to a fixed lattice topology, the particles may well move off-lattice.
The rule of motion we propose for the particles is

rFaF(t+y)=rFaF(t)+
YF aF(t)
MaF
+
FFaF(t)
2MaF

(7)

where rFaF(t) denotes the location of particle aF.
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A geometrical interpretation of this relation is given in ref. 1 for a
particular case. A more formal proof is given by the fact that YF is a locally
conserved quantity (see below) which can judiciously used to represent the
momentum of each particle.
It is important to note that the above model is not invariant under

rotation, due to the fixed orientation of the rest springs Dk and, for this
reason, the present solid cannot freely rotate. This problem is related to the
fact there is no simple theory of rotation for a non-rigid body. This
problem is important for situations not entirely consisting of a translational
motion and we shall return to it later in the text.

2.2. Properties

There are three important properties which follow from the equation
of motion (6) and (7). They are related to momentum and energy conser-
vation, and with a law relating the local deformation and the forces.

2.2.1. Momentum Conservation

If we consider a given site aF at time t, the local forces fFi(aF, t) define the
quantity YF , as given by Eq. (3). After the interaction take place, there is a
new distribution of forces leaving site aF. If we sum all these field emanating
from the interaction at site aF, we obtain a quantity YF out —; i fFi(aF+cFi, t+y)
which can be computed easily. Simple algebra gives

YF out=YF+FF (8)

In other words, the variation of the quantity YF during one step is equal
to the external force. Thus, in absence of force FF , the sum of YF over all
particle is exactly conserved.
Due to property (8), it make sense to interpret YF as the momentum

and to relate the displacement of the particle to YF as done in Eq. (7).

2.2.2. Energy Conservation

A second conserved quantity that can be defined in this model is

EaF(t)=C
i \ 0
fF 2i (aF, t) (9)

that we shall interpret as the energy of node aF. We can easily compute how
this quantity changes after one iteration. Following the same procedure as
for the momentum (i.e., summing the contributions that flow to the neigh-
bors), we obtain

Eout=E+(rFaF(t+y)−rFaF) ·FF (10)
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Thus, the variation of energy is equal to the work done by the external
force. This justifies the terminology of energy.

2.2.3. Deformation

Finally, the dynamics of the model also implies that the following
quantity

rFaF+cFi (t)−rFaF(t)+fFi(aF+cFi, t)−fFi+2(aF, t)=DF
0
i (aF) (11)

is a constant of the motion. We interpret this quantity DF 0i (aF) as the equi-
librium separation between particles aF and aF+cFi because that is what it
should be when the fF’s are zero. Note that Eq. (11) should be used to
specify correctly the relation between the initial position of the particles
and the f’s at time t=0.

2.3. Units

The equations in the last section have been given without units. Any
physical quantity q̃ has a dimensionless counterpart q obtained as q — q̃

q ,
where q is a factor containing the units of q̃.
In our problem, we have three fundamental scales that are l for

[meters], o for [kilograms] and y for [seconds].
The correspondence between the dimensionless quantities we have

used so far and the physical ones is given in Table I where each variable is
given with the units it bears. It is therefore possible by simple substitution
to retrieve units in all of the above equations.

3. SOLID–FLUID INTERACTION

In this section we define the interaction between the particles making
up the solid body and the surrounding fluid. We assume that the fluid is

Table I. Units of the Variables Used in the Model

variable symbol unit

neighbors K —
local force fields fFi oly−2

mass M o

force FF oly−2

momentum YF oly−1

energy E ol2y−2

position rF l

equilibrium separation DF 0i l
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described by a LB model, as presented in Section 1. The interaction we
consider is based on a local exchange of momentum between solid and
fluid particles.
The fluid particles live on a regular lattice (e.g., D2Q9 (16)) but the solid

particles are typically off lattice. Therefore each solid particle exchange its
momentum with the fluid element located on the nearest lattice point.
Let t+ denote the post-collision time, i.e., the time just before the fluid

fields Nk and solid forces fFk are streamed to the corresponding neighbors.
Let DPF represent the amount of momentum exchanged between a pair of
solid–fluid particles. This quantity, computed with the pre-collision fields,
can be introduced in the dynamical equations (1) and (6) in the following
way

Ni(rF+yvFi, t+y)=Ni(rF, t+)+
1
C2
vFi ·DPF (12)

and

fFi(rF+cFi, t+y)=fFi(rF, t+)−
1
4 DPF (13)

where C2 is the lattice coefficient defined as ; k mkvkavkb=C2dab. It is easy
to check that, with these relations, the fluid momentum ruF=; k mkvFkNk
increases by an amount DPF while the solid momentum YF=; k fFk decreases
by the same quantity.
The last question is to determine the value DPF. We choose to compute

this value so that, after collision between a solid particle and a fluid
element, both have the same velocity. In other words, we impose a no-slip
condition at the fluid-solid interface. The solution is

DPF=Z(uFs−uFf) (14)

where 1/Z=(1/r+1/M) and uFs and uFf are respectively the speeds of the
solid and fluid particles before interaction. The quantities r and M denote
the fluid density and the mass of the solid particle. The massM has already
been defined above and the fluid density is given by its standard expression
r=; i Ni(rF, t).
The justification of Eq. (14) can be checked as follows: the fluid

momentum after interaction is ruFf+Z(uFs−uFf) and, thus its velocity is

uF −f=uFf+
M
M+r

(uFs−uFf)
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Similarly, the momentum of the corresponding solid particle is, after
interaction,MuFs−Z(uFs−uFf). Therefore, its speed is

uF −s=uFs−
r

M+r
(uFs−uFf)

and, thus, uF −s−uF
−

f=0.
Note that the solid objects we have defined here are permeable in the

sense that fluid particles can penetrate between the solid particles, which is
also the case for Ladd and Behrend’s models. (10, 11) Figure 4 shows that the
fluid which penetrate inside a plate moving in a fluid rapidly take the same
speed as the solid. Therefore the porosity of our solid has no important
effect.

Fig. 4. The amount of fluid inside a solid. For a 10×10 square solid under traction in the x
direction, we measure the normalized difference Ex, y=|

us −uf
us
|x, y of velocity between a solid and

a fluid site. The plot is that of the mean difference OEP in both directions. We observe that
apart for a thin layer on the boundaries facing the flow, the fluid inside a moving solid has the
same velocity.
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4. SOME NUMERICAL EXPERIMENTS

The goal of this section is to validate the solid–fluid interaction
described in Section 2 through a drag experiment and then study a ‘‘poly-
merized’’ fluid. In all cases, a D2Q7 lattice with w=1.0 is used to model
the fluid.

4.1. Drag Coefficient

The situation we consider is a drag experiment with a disk whose
internal particles are subject to an external force FF introduced as shown
in (6). This force accelerates the object in a 2D channel filled with a LB
fluid whose viscosity is known to be (1, 16) n3 (1/w−1/2). As the solid
moves, each of its particle exchange momentum with the surrounding fluid,
as explained in Section 3. The channel is periodic along the horizontal
direction and has a no-slip boundary conditions at the upper and lower
walls obtained with a bounce-back scheme.
It is common to consider the so-called drag coefficient (17, 18)

cd=
F
ru2.D

where D is the disk diameter. It is well known from Stokes law (17, 18) that for
a cylinder

if Re° 102 then cd 3
1
Re

(15)

where Re is the Reynolds number.
In our simulations, we compute the cylinder’s velocity u. by consid-

ering that at small velocities the velocity of the cylinder obeys

du
dt
=−au(t)+F

in agreement with (15) and whose solution is

u(t)=
F
a
(1−e−at)

Figure 5 (left) shows a fit to such a behavior for the velocity of the
cylinder.
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Fig. 5. Drag simulation: (right) the evolution of the velocity of the cylinder follows
u(t)=F

a (1−e
−at). (left) Stokes law for a cylinder; up to Reynolds number of a 102 Cd3 Re−1,

units are arbitrary.

The drag force F is the only parameter we choose to adjust the value of
our Reynolds number. Figure 5 (right) shows the results of our drag experi-
ments. The correct relation between the drag coefficient and the Reynolds
number as expected by Stokes law is observed and corresponds to experi-
mental results reported in textbook. (17) As the Reynolds number approaches
the value of 102 where Stokes law is in fact no longer valid, a small deviation
can effectively be seen. Note that in this experiment, no important deforma-
tion of the solid has been observed while in motion in the fluid.

4.2. A Polymerized Fluid

The experiment we perform consists in placing a set of one-dimen-
sional solids (i.e., chains of particles, or pseudo-polymer) in a shear flow uF=
(ux(y), 0) with “yux(y) ] 0. We consider the following three situations:
first the chains are perpendicular to the flow and extend over several fluid
layers; second, the chains are parallel to the flow; finally a mixed system of
parallel and perpendicular polymer is investigated. In all cases, we study
the properties of the mean velocity profile of the fluid along the channel
which for a Newtonian fluid under shear stress follows

yxy ’ n
“ux
“y

where yxy is the shear strees imposed on the fluid.
In the perpendicular case, see Fig. 6 (left), the velocity profile appears

to be flat compared to the free case. The profile is in fact still that of a
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Fig. 6. (left) Velocity profiles for a fluid free of polymers and a fluid with 2000 polymers
perpendicular to the flow. The flat profiles is in fact still a linear shear flow profile. The gra-
dient differs of two orders of magnitude: the free case exhibits a slope of 0.01 while for the
perpendicular case it is worth 0.00022 leading to a apparent viscosity 45 times higher. (right)
The dependency of the gradient of ux as a function of shear stress. The relation is linear,
however the linearity constant depends on the ratio g between parallel and perpendicular
polymers. The two plots are for a total of 2000 polymers and g=1 and g=1/3.

Newtonian shear flow but with a proportionality constant nearly two
orders of magnitude lower. The apparent viscosity of the fluid is therefore
strongly increased by the presence of perpendicular polymers. This can be
understood from the fact that the perpendicular chains couple layers of
fluids with different velocities and tend to force them to have the same
speed.
In the parallel case, we start with a fluid at rest and a given density of

parallel polymers also at rest. We observe that the stationary velocity gra-
dient is identical to the case of the free fluid. This is expected since the
polymers are now aligned with the fluid layers and do not prevent a gra-
dient to set up.
However, the time it takes for the fluid to relax to this stationary

velocity profile is dependent of the parallel polymer concentration. To
measure the characteristic relaxation time, we simply fit the velocity profile
with a first order polynomial and look at the evolution of the chi-square q2
coefficient during time. The time evolution of this coefficient can be fitted
with an exponential whose time constant 1/c is shown in Fig. 7, for various
values of the number of polymers in the system. Therefore, the presence of
parallel chains of particles slows down the response of the fluid to an
external stress.
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Fig. 7. The characteristic relaxation time to the linear shear profile as a function of polymer
concentration g. The plot shows the time constant c. The value of g means the number of solid
particle per fluid cell.

Finally, we study a mixed system of parallel and perpendicular poly-
mers. Given a constant number of polymers, we look at the influence of the
shear stress on the velocity profile for two different ratios of parallel and
perpendicular polymer densities. As expected from the purely perpendicular
case, the velocity profile is several order of magnitude lower than the free
case. However, it does depend linearly with the shear stress as expected from
a Newtonian fluid, Fig. 6 (right). The proportionality constant, i.e., the vis-
cosity, however depends on the ratio of parallel and perpendicular chains.
Therefore, by introducing a mechanism enabling a rotation of the polymers,
which is not yet the case in this model, we expect to be able to model a non
Newtonian behavior for the fluid. Of importance will be the characterisic
time for the response of the polymers to a local velocity gradient and the time
for the rotation in order to adjust the viscoelastic properties.
It is important to remember that an important issue of this model is to

keep all components at the same level of description. At this point, intro-
ducing rotations, i.e., angular momentum, in the LB model of the solid has
not yet been possible and may not be for theoretical reasons. We might
therefore consider the possibility to put an ad hoc mechanism, similar to
that used by Ladd, (10) in which the total torque is considered to produce a
global rotation of the object.
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5. CONCLUSIONS

We have introduced a mesoscopic model for solid bodies whose internal
‘‘atoms’’ move according to a LB dynamics. Mass, momentum and energy
can be defined for such an object and these quantities behave as expected
for a real solid. However, no conserved angular momentum can be intro-
duced in the current version of the model.
The complete description of this LB solid will be given elsewhere (14)

and the application of the model to fracture phenomena is given in ref. 9.
The main goal of the present paper is to investigate the behavior of such
solid object in suspension in a LB fluid. The results is that both large scale
solid suspensions of arbitrary shapes and the fluid are described at the
same mesoscopic level. Thus interaction between fluid elements and solid
particles are naturally implemented through a momentum exchange. The
amount of momentum exchanged is chosen so as to ensure a no-slip con-
dition at the solid–fluid interface. As a validation, we have numerically
studied a LB solid dragged by an external force in a LB fluid. The proper-
ties are in agreement with the expected behavior.
Finally we have shown that introducing a population of ‘‘polymers,’’

i.e., 1d chains of our LB solid, in a shear flow can modify the velocity
profile. The resulting fluid is still Newtonian, however the proportionality
constant between stress and velocity gradient depends on the ratio of
polymers with parallel and perpendicular orientation to the flow. By
introducing a mechanism allowing for the rotation of the polymers in an
extension of this model, we expect to observe a non Newtonian behavior of
the fluid.
Among the possible applications of the model we plan to develop, we

can mention the problem of a fluid flow contained in flexible wall such as
blood flow in artery (provided one prevents the fluid to penetrate the
solid), or applications to study the deformation of flexible objects in a
flow (e.g., behavior of seaweeds in water current, or the impact of wind on
construction).
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